Lesson 16. The Gradient Vector and Directional Derivatives

0 Warm up

Example 1. Let $\vec{a}=4 \vec{i}+\vec{j}$ and $\vec{b}=\vec{i}-2 \vec{j}$.
a. Find $\vec{a} \cdot \vec{b}$.
b. Find a unit vector that has the same direction as \vec{b}.

1 The gradient vector

- The gradient of a function $f(x, y)$ of two variables is
- The gradient is a vector of partial derivatives

Example 2. Let $f(x, y)=\sin y+e^{x y}$. Find $\nabla f(1,0)$.

2 The directional derivative

- Recall for a function $f(x, y)$:
- The partial derivative f_{x} is
- The partial derivative f_{y} is
- What about other directions?
- Let $u=\langle a, b\rangle$ be an arbitrary unit vector

- The directional derivative of f at (x, y) in the direction of a unit vector $\vec{u}=\langle a, b\rangle$ is

$$
D_{\vec{u}} f(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h a, y+h b)-f(x, y)}{h}
$$

- The directional derivative $D_{\vec{u}} f(x, y)$ is

Example 3. The contour map of the temperature function $T(x, y)$ is shown below (x and y are simply coordinates). Estimate the directional derivative of T at Reno in the southeasterly direction. What does this value mean?

- To compute the directional derivative, we can use:
\square
- Note: \vec{u} must be a unit vector
- If you are asked for the the directional derivative "in the direction of \vec{v}," make sure \vec{v} is a unit vector. If it isn't, make it one.

Example 4. Find the directional derivative of $f(x, y)=\sin y+e^{x y}$ at the point $(1,0)$ in the direction of the vector $\vec{v}=\langle-3,4\rangle$.

3 The gradient and directional derivative for functions of 3 variables

- The gradient of a function $f(x, y, z)$ of three variables is defined similarly:

$$
\nabla f(x, y, z)=\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle
$$

- The directional derivative of f at (x, y, z) in the direction of a unit vector \vec{u} can be computed using

$$
D_{\vec{u}} f(x, y, z)=\nabla f(x, y, z) \cdot \vec{u}
$$

- The directional derivative $D_{\vec{u}} f(x, y, z)$ is
\square

Example 5. Find the directional derivative of $f(x, y, z)=\ln (3 x+6 y+9 z)$ at point $(1,1,1)$ in the direction of $\vec{v}=\langle 2,6,3\rangle$.

