Lesson 16. The Gradient Vector and Directional Derivatives

0 Warm up

Example 1. Let $\vec{a} = 4\vec{i} + \vec{j}$ and $\vec{b} = \vec{i} - 2\vec{j}$.

a. Find $\vec{a} \cdot \vec{b}$.

b. Find a unit vector that has the same direction as \vec{b} .

1 The gradient vector

- The **gradient** of a function f(x, y) of two variables is
- The gradient is a vector of partial derivatives

Example 2. Let $f(x, y) = \sin y + e^{xy}$. Find $\nabla f(1, 0)$.

2 The directional derivative

• Recall for a function *f*(*x*, *y*):

- What about other directions?
- Let $u = \langle a, b \rangle$ be an arbitrary <u>unit</u> vector

• The **directional derivative** of *f* at (x, y) in the direction of a unit vector $\vec{u} = \langle a, b \rangle$ is

$$D_{\vec{u}}f(x,y) = \lim_{h \to 0} \frac{f(x+ha,y+hb) - f(x,y)}{h}$$

• The directional derivative $D_{\vec{u}}f(x, y)$ is

Example 3. The contour map of the temperature function T(x, y) is shown below (*x* and *y* are simply coordinates). Estimate the directional derivative of *T* at Reno in the southeasterly direction. What does this value mean?

- To compute the directional derivative, we can use:
- Note: \vec{u} must be a unit vector
 - If you are asked for the directional derivative "in the direction of \vec{v} ," make sure \vec{v} is a unit vector. If it isn't, make it one.

Example 4. Find the directional derivative of $f(x, y) = \sin y + e^{xy}$ at the point (1, 0) in the direction of the vector $\vec{v} = \langle -3, 4 \rangle$.

3 The gradient and directional derivative for functions of 3 variables

• The gradient of a function f(x, y, z) of three variables is defined similarly:

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$$

• The directional derivative of f at (x, y, z) in the direction of a unit vector \vec{u} can be computed using

$$D_{\vec{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \vec{u}$$

• The directional derivative $D_{\vec{u}}f(x, y, z)$ is

Example 5. Find the directional derivative of $f(x, y, z) = \ln(3x + 6y + 9z)$ at point (1, 1, 1) in the direction of $\vec{v} = \langle 2, 6, 3 \rangle$.